Stability of graphene-based heterojunction solar cells
نویسندگان
چکیده
Bulk-heterojunction (BHJ) solar cells based on organic small molecules and polymers are the focus of increasing attention by science and commerce. In organic photovoltaic devices, a conjugated polymer layer is used as the donor, while a fullerene-based derivative is used as the acceptor. Poly(3,4ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is one of the most common interfacial materials used for organic BHJ solar cells. However, PEDOT:PSS is acidic and hygroscopic in nature, and it inherits microstructural inhomogeneities that cause not only gradual degradation, but a complete failure of BHJ solar cell devices. There is a growing interest in graphene-based solar cells because graphene-based materials offer ease of solution processability, high optical transparency, and high power conversion efficiency. Graphene has been actively investigated for use as a transparent conducting electrode, and as a photoactive layer in fabricating solar cell devices. Power conversion efficiency in the range of 10% to 15% for graphene and inorganic semiconductor-based hybrid heterojunction solar cells, and 15.6% for graphene-containing perovskite solar cells has been observed. Organic materials-based solar cells degrade not only from environmental exposure, but also from photo-oxidation caused by light illumination. In addition to higher power conversion efficiency, stability in graphene-based solar cells is critically important for commercial applications. In this review article, the stability of graphene-based heterojunction solar cells under atmospheric conditions is evaluated. Current studies show that the insertion of a graphene buffer layer into solar cell heterostructures stops degradation and enhances stability in solar cell devices. Long-term environmental stability of graphenebased heterojunction solar cells for commercial applications is discussed.
منابع مشابه
High Efficiencies in Nanoscale Poly(3-Hexylthiophene)/Fullerene Solar Cells
A modified morphology was introduced for poly(3-hexylthiophene):phenyl-C71-butyric acid methyl ester (P3HT:PC71BM) bulk heterojunction (BHJ) solar cells by thermal and solvent annealing treatments in the presence of hydrophilic-hydrophobic block copolymers. Power conversion efficiency (PCE) plummet was prohibited during both thermal and solvent treatments for all BHJ devices modified wit...
متن کاملHole and electron extraction layers based on graphene oxide derivatives for high-performance bulk heterojunction solar cells.
By charge neutralization of carboxylic acid groups in graphene oxide (GO) with Cs(2)CO(3) to afford Cesium-neutralized GO (GO-Cs), GO derivatives with appropriate modification are used as both hole- and electron-extraction layers for bulk heterojunction (BHJ) solar cells. The normal and inverted devices based on GO hole- and GO-Cs electron-extraction layers both outperform the corresponding sta...
متن کاملImprovement of light harvesting by inserting an optical spacer (ZnO) in polymer bulk heterojunction solar cells: A theoretical and experimental study
By introducing a thin ZnO layer as an optical spacer, we have demonstrated that inserting this layer between an active layer and a reflective electrode results in a re-distribution of the optical electric field inside bulk heterojunction solar cells. A theoretical analysis by optical modeling showed that the thin ZnO layer could shift the position of the maximum of the electric field into the a...
متن کاملHybrid zinc oxide/graphene electrodes for depleted heterojunction colloidal quantum-dot solar cells.
Recently, hybrid nanocomposites consisting of graphene/nanomaterial heterostructures have emerged as promising candidates for the fabrication of optoelectronic devices. In this work, we have employed a facile and in situ solution-based process to prepare zinc oxide/graphene quantum dots (ZnO/G QDs) in a hybrid structure. The prepared hybrid dots are composed of a ZnO core, with an average size ...
متن کاملThe Impact of Graphene on the Fabrication of Thin Film Solar Cells: Current Status and Future Prospects
Commercial solar cells have a power conversion efficiency (PCE) in the range of 10-22% with different light absorbers. Graphene, with demonstrated unique structural, physical, and electrical properties, is expected to bring the positive effects on the development of thin film solar cells. Investigations have been carried out to understand whether graphene can be used as a front and back contact...
متن کامل